首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   9篇
  国内免费   13篇
测绘学   11篇
大气科学   14篇
地球物理   143篇
地质学   136篇
海洋学   75篇
天文学   57篇
综合类   14篇
自然地理   43篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   8篇
  2016年   15篇
  2015年   7篇
  2014年   20篇
  2013年   31篇
  2012年   12篇
  2011年   27篇
  2010年   15篇
  2009年   26篇
  2008年   24篇
  2007年   21篇
  2006年   12篇
  2005年   20篇
  2004年   12篇
  2003年   19篇
  2002年   16篇
  2001年   15篇
  2000年   11篇
  1999年   15篇
  1998年   12篇
  1997年   9篇
  1995年   8篇
  1994年   10篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   8篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有493条查询结果,搜索用时 15 毫秒
481.
The oxidation state diagram provides additional information that cannot be readily discerned from an activity ratio—pE diagram. A theoretical framework for explaining the existence of thermodynamically unstable species becomes available.  相似文献   
482.
A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion   总被引:11,自引:0,他引:11  
This letter derives the two-dimensional point target spectrum for an arbitrary bistatic synthetic aperture radar configuration. The method described makes use of series reversion, the method of stationary phase, and Fourier transform pairs to derive the point target spectrum. The accuracy of the spectrum is controlled by keeping enough terms in the two series expansions, and is verified with a point target simulation  相似文献   
483.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
484.
Pouragha  Mehdi  Eghbalian  Mahdad  Wan  Richard  Wong  Tai 《Acta Geotechnica》2021,16(4):1147-1160

Water retention of clayey soils with wide particle size distributions involves a combination of capillary and adsorbed layers effects that result into suction–saturation relations spanning over multiple decades of matric suction values. The present study provides a physics-based analysis to reproduce the water retention curve of such soils based solely on particle size distribution and porosity. The distribution of inter-particle pore sizes is inferred through a probabilistic treatment of the particle size distribution, which is then used, together with an assigned pore entry pressure, to estimate the inter-particle water volume at a given suction. The contribution to water content from adsorbed layers is also taken into account by considering the balance of electrochemical forces between water and clay material. The total water content is therefore found by summing up the contribution of inter-particle water, as well as adsorbed layers that form around clay particles and around the individual clay platelets. Comparisons with experimental results on nine different soil samples verify the capability of the model in accurately predicting the wide water retention curves without any prior calibration. Additional to capturing the essential features of the water retention curve with remarkable detail, the analytical model also provides insights into the relative contributions of capillary and adsorbed waters to the overall saturation at different suction regimes. Being based upon easily accessible information such as particle size distribution and void ratio, the model can therefore be considered as a substitute for costly and lengthy laboratory and in situ measurements of water retention curve.

  相似文献   
485.
486.
Piping flow networks have often been identified in hydrogeological field studies of gravelly soil slopes in the southern part of China. The present experimental studies have shown that under long-term groundwater seepage, piping flow networks gradually develop in the slope. Factors affecting the development of flow pipe seepage network included the grain size distribution, the degree of soil compaction, and soil depth. Piping seepage networks favorably form if the content of the gravel was high, the soil cohesion was low, the degree of the soil compaction was low, or the soil depth was shallow. Due to the enhanced permeability associated with the presence of flow pipe seepage network in gravelly soil slopes, groundwater can be effectively drained away. This can beneficially prevent the rise of groundwater level in the slope during raining seasons, hence reducing pore water pressure along the potential failure surface and increasing slope stability. Once the flow pipe seepage network was disturbed or damaged, the water level in the upper portion of the slope experienced a great rise, hence reducing the slope stability. Therefore, slope toe excavation and excessive loading at the slope crest should be avoided for slopes with well-developed flow pipe seepage network in order to preserve it.  相似文献   
487.
The present numerical study, which is an extension of our previous numerical analysis on cracking processes of a single pre-existing flaw, focuses on the coalescence of two pre-existing parallel open flaws in rock subjected to a uniaxial compressive loading. To facilitate a systematic investigation, the arrangements of the flaw pair are classified into 11 categories. Simulations engaging AUTODYN are conducted on each category. The numerical results are compared with some published physical experimental test results. Eleven typical coalescence patterns are obtained, which are in good agreement with the experimental results, which include two coalescence patterns obtained in flaw pair arrangements (II) and (VIII″) not being reported in previous studies. The information gathered in the simulations helps identify the type (tensile/shear) of each crack segment involved in the coalescence. Most of the coalescence cracks initiate at or around the flaw tips, except those in flaw pair arrangements (II) and (IX′) with a very short ligament length, in which the coalescence cracks initiate on the flaw surfaces away from the flaw tip regions. Based on the numerical simulation results, the properties of the 11 coalescence patterns are obtained. Except those in flaw pair arrangements (II) and (IX′), the other coalescence patterns can be interpreted with respect to the basic crack types—tensile wing crack, horsetail crack and anti-wing crack. In addition, based on the type of crack segments involved in coalescence, namely tensile and shear, the coalescence can be classified into T mode (tensile mode), S mode (shear mode) and TS mode (mixed tensile–shear mode).  相似文献   
488.
Near-infrared and mid-infrared observations of the site of the 2009 July 19 impact of an unknown object with Jupiter were obtained within days of the event. The observations were used to assess the properties of a particulate debris field, elevated temperatures, and the extent of ammonia gas redistributed from the troposphere into Jupiter’s stratosphere. The impact strongly influenced the atmosphere in a central region, as well as having weaker effects in a separate field to its west, similar to the Comet Shoemaker-Levy 9 (SL9) impact sites in 1994. Temperatures were elevated by as much as 6 K at pressures of about 50-70 mbar in Jupiter’s lower stratosphere near the center of the impact site, but no changes above the noise level (1 K) were observed in the upper stratosphere at atmospheric pressures less than ∼1 mbar. The impact transported at least ∼2 × 1015 g of gas from the troposphere to the stratosphere, an amount less than derived for the SL9 C fragment impact. From thermal heating and mass-transport considerations, the diameter of the impactor was roughly in the range of 200-500 m, assuming a mean density of 2.5 g/cm3. Models with temperature perturbations and ammonia redistribution alone are unable to fit the observed thermal emission; non-gray emission from particulate emission is needed. Mid-infrared spectroscopy of material delivered by the impacting body implies that, in addition to a silicate component, it contains a strong signature that is consistent with silica, distinguishing it from SL9, which contained no evidence for silica. Because no comet has a significant abundance of silica, this result is more consistent with a “rocky” or “asteroidal” origin for the impactor than an “icy” or “cometary” one. This is surprising because the only objects generally considered likely to collide with Jupiter and its satellites are Jupiter-Family Comets, whose populations appear to be orders of magnitude larger than the Jupiter-encountering asteroids. Nonetheless, our conclusion that there is good evidence for at least a major asteroidal component of the impactor composition is also consistent both with constraints on the geometry of the impactor and with results of contemporaneous Hubble Space Telescope observations. If the impact was not simply a statistical fluke, then our conclusion that the impactor contained more rocky material than was the case for the desiccated Comet SL9 implies a larger population of Jupiter-crossing asteroidal bodies than previously estimated, an asteroidal component within the Jupiter-Family Comet population, or compositional differentiation within these bodies.  相似文献   
489.
Summary  A completely new nonhydrostatic model system known as the Advanced Regional Prediction System (ARPS) has been developed in recent years at the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma. The ARPS is designed from the beginning to serve as an effective tool for basic and applied research and as a system suitable for explicit prediction of convective storms as well as weather systems at other scales. The ARPS includes its own data ingest, quality control and objective analysis packages, a data assimilation system which includes single-Doppler velocity and thermodynamic retrieval algorithms, the forward prediction component, and a self-contained post-processing, diagnostic and verification package. The forward prediction component of the ARPS is a three-dimensional, nonhydrostatic compressible model formulated in generalized terrain-following coordinates. Minimum approximations are made to the original governing equations. The split-explicit scheme is used to integrate the sound-wave containing equations, which allows the horizontal domain-decomposition strategy to be efficiently implemented for distributed-memory massively parallel computers. The model performs equally well on conventional shared-memory scalar and vector processors. The model employs advanced numerical techniques, including monotonic advection schemes for scalar transport and variance-conserving fourth-order advection for other variables. The model also includes state-of-the-art physics parameterization schemes that are important for explicit prediction of convective storms as well as the prediction of flows at larger scales. Unique to this system are the consistent code styling maintained for the entire model system and thorough internal documentation. Modern software engineering practices are employed to ensure that the system is modular, extensible and easy to use. The system has been undergoing real-time prediction tests at the synoptic through storm scales in the past several years over the continental United States as well as in part of Asia, some of which included retrieved Doppler radar data and hydrometeor types in the initial condition. As the first of a two-part paper series, we describe herein the dynamic and numerical framework of the model, together with the subgrid-scale turbulence and the PBL parameterization. The model dynamic and numerical framework is then verified using idealized and realistic mountain flow cases and an idealized density current. Other physics parameterization schemes will be described in Part II, which is followed by verification against observational data of the coupled soil-vegetation model, surface layer fluxes and the PBL parameterization. Applications of the model to the simulation of an observed supercell storm and to the prediction of a real case are also found in Part II. In the latter case, a long-lasting squall line developed and propagated across the eastern part of the United States following a historical number of tornado outbreak in the state of Arkansas. Received April 14, 2000 Revised July 17, 2000  相似文献   
490.
Changing population density is often ignored in studies of population growth and population transfer in the United States. We show that there is a complex relationship between patterns of population growth and density increase by state. The largest gains in density are in the states of the northeastern megalopolis, California, and Florida. Analysis of the 150 counties with the greatest increases in density between 1980 and 1990 shows that they are well distributed across the United States including the larger metropolitan areas of the “Rustbelt.” In general, the most densely populated states and places are becoming more densely populated, a concept we refer to as densification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号